1. Suku
pertama dari barisan aritmatika adalah 4 dan bedanya = 3, suku ke-10 dari barisan
aritmatika tersebut adalah
2. Diketahui
barisan aritmatika sebagai berikut: 5, 8, 11, …
Tentukan nilai suku ke-15 !
Tentukan nilai suku ke-15 !
3.
Sebuah tali dibagi menjadi 6 bagian yang panjangnya membentuk suatu barisan
geometri. Jika tali yang paling pendek adalah 3 cm dan yang paling panjang 96
cm maka panjang tali semula adalah
pembahasan
suku
awal = 3 dan U6 = 96
Un = a.rn-1
96 = 3.r5
r5 = 32
r = 2
S6 = a (1-r6)/ 1-r
S6 = 3 (1-26)/ 1-2 = -189/-1 = 189 cm
Un = a.rn-1
96 = 3.r5
r5 = 32
r = 2
S6 = a (1-r6)/ 1-r
S6 = 3 (1-26)/ 1-2 = -189/-1 = 189 cm
4.
Diberikan sebuah deret:
−10 + (−6) + (−2) + 2 + 6 + ....
Tentukan suku ke-17
−10 + (−6) + (−2) + 2 + 6 + ....
Tentukan suku ke-17
pembahasan
a = − 10
b = −6 −(−10) = 4
n = 17
Un = a + (n−1)b
U17 = −10 + (17 − 1)4 = −10 + 64 = 54
a = − 10
b = −6 −(−10) = 4
n = 17
Un = a + (n−1)b
U17 = −10 + (17 − 1)4 = −10 + 64 = 54
5. Antara
bilangan 20 dan 116 disisipkan 11 bilangan sehingga bersama kedua bilangan
semula terjadi deret hitung. Maka jumlah deret hitung yang terjadi adalah
pembahasan
Diketahui:
deret aritmatika mula-mula: 20 + 116
a =
20
Un
= 116
n =
2
k =
11 bilangan
banyaknya
suku baru : n’ = n + (n-1) k
= 2 + (2-1) 11 = 2 + 11 = 13
Jadi,
jumlah deret aritmatika setelah sisipan adalah 884
Keterangan:
b’ = beda barisan
aritmatika setelah disisipkan k buah suku
n’ = banyak suku barisan
aritmatika baru
n = banyak suku barisan
aritmatika lama
k = banyak suku yang
disisipkan
Sn’ = jumlah n suku pertama
setelah disisipkan k buah suku
6. Tempat duduk gedung pertunjukkan film diatur mulai dari baris depan ke belakang dengan banyak baris dibelakang lebih 4 kursi di baris depannya. Bila dalam gedung pertunjukkan terdapat 15 baris kursi dan baris terdepan ada 20 kursi, kapasitas gedung pertunjukkan adalah
pembahasan
a = 20
b = 4
n = 15
Ditanya: Sn
Jawab: Sn = 1/2 n [2a + (n - 1) b] = 1/2 . 15 [2.20 + (15 - 1) 4] = 720 kursi
a = 20
b = 4
n = 15
Ditanya: Sn
Jawab: Sn = 1/2 n [2a + (n - 1) b] = 1/2 . 15 [2.20 + (15 - 1) 4] = 720 kursi
7. Jumlah n suku pertama deret aritmetika dinyatakan
dengan Sn = n2 + 2n. Beda dari deret itu adalah
pembahasan
Misal n = 1 maka S1 = 12 + 2 . 1 = 3
Sn = n/2 (2a + (n - 1) b
3 = 1/2 (2a + (1 - 1) b
6 = 2a + 0b = 2a
2a = 6
a = 3
Untuk menentukan beda, misalkan n = 2 maka S2 = 22 + 2 . 2 = 8
Sn = n/2 (2a + (n - 1) b
8 = 2/2 (2 . 3 + (2 - 1) b
8 = 6 + b
b = 8 - 6 = 2
Misal n = 1 maka S1 = 12 + 2 . 1 = 3
Sn = n/2 (2a + (n - 1) b
3 = 1/2 (2a + (1 - 1) b
6 = 2a + 0b = 2a
2a = 6
a = 3
Untuk menentukan beda, misalkan n = 2 maka S2 = 22 + 2 . 2 = 8
Sn = n/2 (2a + (n - 1) b
8 = 2/2 (2 . 3 + (2 - 1) b
8 = 6 + b
b = 8 - 6 = 2
8. Tempat duduk gedung pertunjukkan film diatur mulai dari baris depan ke belakang dengan banyak baris dibelakang lebih 4 kursi di baris depannya. Bila dalam gedung pertunjukkan terdapat 15 baris kursi dan baris terdepan ada 20 kursi, kapasitas gedung pertunjukkan adalah
pembahasan
a
= 20
b = 4
n = 15
Ditanya: Sn
Jawab: Sn = 1/2 n [2a + (n - 1) b] = 1/2 . 15 [2.20 + (15 - 1) 4] = 720 kursi
b = 4
n = 15
Ditanya: Sn
Jawab: Sn = 1/2 n [2a + (n - 1) b] = 1/2 . 15 [2.20 + (15 - 1) 4] = 720 kursi
9. Jumlah n suku pertama deret aritmetika dinyatakan dengan Sn = n2 + 2n. Beda dari deret itu adalah
pembahasan
Misal n = 1 maka S1 = 12 + 2 . 1 = 3
Sn = n/2 (2a + (n - 1) b
3 = 1/2 (2a + (1 - 1) b
6 = 2a + 0b = 2a
2a = 6
a = 3
Untuk menentukan beda, misalkan n = 2 maka S2 = 22 + 2 . 2 = 8
Sn = n/2 (2a + (n - 1) b
8 = 2/2 (2 . 3 + (2 - 1) b
8 = 6 + b
b = 8 - 6 = 2
Misal n = 1 maka S1 = 12 + 2 . 1 = 3
Sn = n/2 (2a + (n - 1) b
3 = 1/2 (2a + (1 - 1) b
6 = 2a + 0b = 2a
2a = 6
a = 3
Untuk menentukan beda, misalkan n = 2 maka S2 = 22 + 2 . 2 = 8
Sn = n/2 (2a + (n - 1) b
8 = 2/2 (2 . 3 + (2 - 1) b
8 = 6 + b
b = 8 - 6 = 2
10. Diketahui suatu barisan
aritmetika dengan suku ke-5 adalah 14 dan suku ke-8 adalah 29. Tentukan suku
pertama dan beda barisan tersebut, tentukan suku ke-12 dari barisan tersebut,
dan tentukan jumlah 10 suku pertama deret aritmatika tersebut!
pembahasan
Un = a + (n − 1)b
maka
U5 = a + (5 − 1)b
14 = a + 4b => a = 14 – 4b
U8 = a + (8 − 1)b
29 = a + 7b
29 = (14 – 4b) + 7b
15 = 3b
b = 5
a = 14 – 4b
a = 14 – 4.5
a = - 6
Jadi, suku pertama barisan tersebut
adalah –6, dan beda barisannya adalah 5.
Suku ke-12 dari barisan tersebut:
U5 = a + (5 − 1)b
U12 = −6 + (12 − 1)5
U12 = −6 + 11 . 5
U12 = 49
Jumlah dari deret aritmatika dapat
ditulis:
Sn = (n/2)(2a + (n – 1) b)
S10 = (10/2)(2.- 6 + (10 – 1)5)
S10 = 5 . (- 12 + 45)
S10 = 165
Tidak ada komentar:
Posting Komentar